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Counterpart Theory and the Actuality Operator 
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Michael Fara and Timothy Williamson (Mind, 2005) argue that David Lewis’s counterpart theory is 
unable to account for modal claims that use an actuality operator. This paper argues otherwise. Rather 
than provide a different counterpart translation of the actuality operator itself, the solution presented 
here starts out with a quantified modal logic in which the actuality operator is redundant, and then 
translates the sentences of this logic into claims of counterpart theory. 

 
 
According to Michael Fara and Timothy Williamson 2005, counterpart theory must be rejected as 
a theory of modality because it cannot give an acceptable account of the two-dimensional 
actuality operator ACT. My aim in this paper is to offer a rebuttal on behalf of the counterpart 
theorist. To set up the discussion, I briefly review counterpart theory and the actuality operator in 
sections 1 and 2. Section 3 presents Fara and Williamson’s argument against counterpart theory, 
plus a temporal variant of the argument that David McElhoes recently advanced against Theodore 
Sider’s stage theory. My reply to both objections is developed in sections 4–8. 
 
1. Counterpart theory 

As formulated by David Lewis (1968, 1986), counterpart theory is an extensional theory of 
modality that employs unrestricted quantification over all possible worlds and their contents. It 
uses four primitive predicates: 
 
Wx  x is a possible world 
Ixy x is in the possible world y 
Cxy x is a counterpart of y 
Ax x is actual 
 
The theory then consists of eight postulates about worlds and counterparts: 
 
(P1)  ∀x∀y(Ixy → Wy) 
(P2)  ∀x∀y∀z((Ixy & Ixz) → y = z) 
(P3)  ∀x∀y(Cxy → ∃z Ixz) 
(P4)  ∀x∀y(Cxy → ∃z Iyz) 
(P5)  ∀x∀y∀z((Ixy & Izy & Cxz) → x = z) 
(P6)  ∀x∀y(Ixy → Cxx) 
(P7)  ∃x(Wx & ∀y (Iyx ↔ Ay)) 
(P8)  ∃x Ax 
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The actual world @ is defined as the possible world that contains all and only actual objects. Its 
existence is guaranteed by (P7), and its uniqueness by (P2) and (P8).  
 
In this theory, the counterpart relation C plays a similar role as trans-world identity does in 
quantified modal logic. The key difference is that the properties of C are not as restricted as those 
of identity. According to counterpart theory, to say that I might have been a poet is to say that 
there is a possible world in which there is a counterpart of me who is a poet. Since (P2) tells us 
that no object is in more than one possible world, my counterpart and I are different objects. And 
while (P5) ensures that, in the world it is in, no object has counterparts other than itself, it can 
have more than one counterpart in other worlds. Unlike identity, the counterpart relation can 
therefore be one-many. Since counterparts are not identical, counterpart theory can also admit 
more than one counterpart relation. The same object x can be a counterpart of y in one respect, but 
not in another. Due to this richer structure, there are modal claims that can be expressed in 
counterpart theory, but not in quantified modal logic (for examples, see Lewis 1968). 
 
To show that the converse does not hold, and that counterpart theory can express every claim that 
quantified modal logic can express, Lewis 1968 offers a translation scheme that takes a claim ϕ 
of quantified modal logic and delivers a substitute ϕ@ in counterpart theory. The quantified modal 
logic that Lewis employs for this purpose has two salient features. First, it contains no singular 
terms, which are supposed to be eliminated prior to translating. (I shall skip over the details of 
this term-elimination here; see Lewis 1968, sec. III, for details.) Second, the quantified modal 
logic uses world-relative quantifiers whose range in a possible world comprises all the objects 
that exist in that world. Given a formula ϕ of quantified modal logic and world w of counterpart 
theory, Lewis gives a recursive definition of ϕw, which is read as ‘ϕ is true in possible world w’: 
 
ϕw  is ϕ if ϕ is atomic 
(¬ϕ)w  is ¬ϕw 
(ϕ → ψ)w is ϕw → ψw 
(∀xϕ)w is ∀x(Ixw → ϕw) 
(☐ϕx1 … xn)w  is ∀v∀y1 … ∀yn((Wv & Iy1v & Cy1x1 & … & Iynv & Cynxn) → (ϕy1 … yn)v) 
  
Here ϕx1 … xn is the result of uniformly substituting the alphabetically ith free variable in ϕ with 
xi for all 1 ≤ i ≤ n. The proposed translation of a sentence ϕ of quantified modal logic is then ϕ@, 
where @ is the actual world of counterpart theory. If this translation scheme works as advertised 
then it follows that counterpart theory has superior expressive capacity: it can express every 
modal claim that quantified modal logic can express, but not vice versa. 
 
When Lewis says that the quantifiers of counterpart theory range over possible worlds and their 
contents, he means to exclude sets, numbers, and other mathematical objects. There is no reason 
to impose such a restriction on the domain of quantification in quantified modal logic. Indeed, we 
need the resources of such a logic to express the widely held view that mathematical objects exist 
necessarily. However, if we applied the above translation scheme to, say, the sentence ☐∃x(x is an 
empty set) then we would end up with the claim that there is an empty set in each possible world 
of counterpart theory, ∀v(Wv → ∃x(Ixv & x is an empty set)). By (P2), all of these empty sets 
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would be distinct from one another, and each possible world would end up containing its own 
copy of the hierarchy of pure sets. That is not Lewis’s view. His position is that mathematical 
objects are not world-bound, and that they exist without being in any possible worlds (1983a, p. 
40). Modal claims about mathematical objects therefore need to be given special treatment, and 
the account offered by Lewis is not going to be the translation of the corresponding regimentation 
in quantified modal logic. Whether this is a plausible view of mathematical object is a nice 
question, but not one that I want to discuss here. What matters for current purposes is that 
Lewis’s translation scheme is only meant to cover modal claims about physical objects.  
 
I also want to draw attention to the roundabout way in which Lewis’s translation scheme provides 
a counterpart-theoretic analogue of the convention that sentences without any modal operators get 
evaluated in the actual world. Since atomic formulae serve as their own translation, they do not 
get tagged to the actual world @ by Lewis’s scheme. But because the quantified modal logic 
assumed by Lewis does not contain any singular terms, every atomic formula contains free 
variables. This means that there are no atomic sentences, anyway. Every unmodalized sentence 
must be logically complex, and contain quantifiers that bind the variables. It is in translating these 
quantifiers, rather than in translating atomic formulae, that unmodalized sentences get restricted 
to objects in the actual world @ of counterpart theory.  
 
2. The actuality operator 

Ordinary modal logic uses unmodalized sentences for making claims about what is actually the 
case. This allows us to describe the actual world from the perspective of the actual world. For 
example, Fa is true in the actual world if and only if a is actually F. The purpose of the two-
dimensional actuality operator ACT is to permit a description of the actual world from the 
perspective of other possible worlds. In any possible world w, ACTϕ is true there if and only if 
the embedded sentence ϕ is true in the actual world. In the special case where w is itself the actual 
world, prefixing the actuality operator makes no difference and the biconditional ϕ ↔ ACTϕ is 
true in all models. (Recall that to be true in a model of modal logic is to be true in its actual 
world.) This does not mean, however, that ϕ can be substituted for ACTϕ in all contexts. Leading 
occurrences of ACT are always redundant, but the actuality operator can make a non-trivial 
contribution to the truth conditions of a sentence when it occurs within the scope of other modal 
operators. Consider the following example: 
 
 ☐(Fa → ACTFa) 
 
In evaluating this sentence in the actual world, the leading modal operator ☐ would direct us to 
look at whether the embedded conditional is true in all possible worlds. Let w be one of these 
worlds. In evaluating the sentence Fa → ACTFa in w, the truth of the antecedent depends on 
whether a is F in w, but the presence of the actuality operator ensures that the truth of the 
consequent depends on whether a is F in the actual world. Our sentence is therefore false in all 
models of modal logic in which Fa is contingently false. (That is, false in the actual world and 
true in some other possible world.) However, if we take our sentence and substitute ACTFa with 
Fa then we get ☐(Fa → Fa), which is a theorem of modal logic, and thus true in all models. This 
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is a familiar feature of two-dimensional modal logic: substitution of logically equivalent 
subformulae is not a valid inference rule.1 
 
Like many other logicians, Fara and Williamson believe that quantified modal logic can only 
express all relevant modal claims if it contains the actuality operator ACT in addition to the more 
familiar operators ☐ and ◊. For example, while the following two sentences are easily rendered in 
terms of the actuality operator, neither is said to possess an acceptable regimentation in terms of 
☐ and ◊ alone (Hazen 1976, Humberstone 1977, Hodes 1984): 
 
(A) There could be something that does not actually exist. 
  ◊∃x(∃y x = y & ¬ACT∃y x = y) 
 
(B) It might have been that everyone who is in fact rich was poor. 

 ◊∀x(ACTRx → Px) 
 
If we grant this assumption then Lewis’s proof of the expressive superiority of counterpart theory 
contains a significant lacuna. His translation scheme might provide a substitute for every modal 
claim that makes use of ☐ and ◊, but it remains to be shown that this result extends to claims that 
also contain ACT. Fara and Williamson argue that this challenge cannot be met. 
 
3. The uniform substitution strategy 

An obvious way in which a counterpart theorist might try to accommodate the actuality operator 
is by adding another clause to Lewis’s translation scheme that would uniformly substitute all 
expressions of the form ACTϕ with appropriate formulae of counterpart theory. But Allen Hazen 
1979 notes that such a uniform substitution strategy quickly runs into difficulties. Suppose we say 
that ACTϕx1 … xn is true in the possible world w of counterpart theory just in case ϕ is true of 
counterparts of x1, … , xn in the actual world @: 
  
(ACTϕx1 … xn)w is ∃y1 … ∃yn (Iy1@ & Cy1x1 … & Iyn@ & Cynxn & ϕy1 … yn)  
 
This translates ACTFx as ∃y(Iy@ & Cyx & Fy), and the logical falsehood ◊∃x(ACTFx ↔ 
ACT¬Fx) gets mapped to ∃w∃x(Ixw & (∃y(Iy@ & Cyx & Fy) ↔ ∃y(Iy@ & Cyx & ¬Fy))), which 
is true in any model of counterpart theory in which some object lacks counterparts in the actual 
world. Fara and Williamson review a number of other proposals for expressing ACTϕ in 
counterpart theory and show that they all suffer from the same problem. For each proposal, they 
find a sentence that is the denial of a theorem of quantified modal logic with an actuality operator, 
but whose translation is true in some models of counterpart theory. They conclude that 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 For details, see Segerberg 1973 and Humberstone 2004. Note that accepting ACT and the biconditional ϕ 
↔ ACTϕ does not commit us to actualism. The actuality operator permits us to refer rigidly to what is true 
in the actual world, but it does not presuppose that there is anything special about that world. One could 
easily introduce similar devices for other possible worlds; see Gabbay and Malod 2002 and the discussion 
of ‘then’ in Vlach 1973.	
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counterpart theory is unacceptable because it cannot account for modal claims that make use of 
the modal operator ACT. 
 
David McElhoes 2010 presents a tense-variant of this argument against Theodore Sider’s 2001 
stage theory. Just as counterpart theory spells out claims about what might have been the case in 
terms of what is true of modal counterparts of actual objects, stage theory proposes an account of 
what was or will be the case in terms of what is true of temporal counterparts of present objects. 
McElhoes argues that stage theory is unable to account for claims of quantified tense logic that 
make use of the two-dimensional NOW operator. While the untensed sentences of tense logic 
make claims about the present moment from the perspective of the present, the NOW operator 
allows us to describe the present from the perspective of other times. At any time t, NOWϕ is true 
then if and only if ϕ is true at the present time. Also in this case, the biconditional ϕ ↔ NOWϕ is 
true in all models of tense logic, but ϕ cannot always be substituted for NOWϕ when it occurs 
within the scope of other tense operators. And just as ACT is said to expand the expressive 
capacity of quantified modal logic, NOW is said to be ineliminable in a quantified tense logic 
whose only other tense operators are P (‘it was the case that’) and F (‘it will be the case that’). 
Hans Kamp 1971 presents the following example, which he claims to lack a NOW-free 
regimentation (see also Prior 1968, Vlach 1973, van Benthem 1977, and Meyer 2009): 
 
(C) A child was born that will become ruler of the world 

 P∃x(Bx & NOWFRx) 
 
Similar to Fara and Williamson’s case against counterpart theory, McElhoes argues that stage 
theory cannot give an acceptable account of claims containing NOW. Any attempt at translating 
sentences containing NOW into stage theory is said to map some denial of a theorem of 
quantified tense logic with a NOW operator to a claim that is true in some models of stage theory.  
 
4. The antecedent elimination strategy 

A committed counterpart or stage theorist might want to continue the search for a better way of 
uniformly substituting subformulae of type ACTϕ or NOWϕ, but I am persuaded that there is 
little hope for success in this direction. Instead, I want to promote an approach that focuses on the 
alleged ineliminability of ACT and NOW. Since the tense and the modal case are exactly parallel 
in this respect, let me here restrict my attention to the actuality operator.  
 
The actuality operator allows us to make claims about the actual world inside the scope of other 
modal operators. That is a nice feature, but describing the actual world is something we could do 
already, by using unmodalized sentences outside the scope of other operators. Offhand, one 
would therefore expect the actuality operator to make no difference to the expressive capacity of 
modal logic. Whenever a claim about the actual world is made within the scope of another modal 
operator, we should be able to move the claim outside that operator’s scope, where we no longer 
need the actuality operator to talk about the actual world. However, this assumes that the rest of 
our logic is strong enough to permit this kind of transformation, and that is not always the case. 
The actuality operator does make a difference in expressive capacity when it is combined with a 
quantified modal logic that is too weak to permit its elimination. But there is no reason why 
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counterpart theorists should measure the expressive capacity of their theory of modality against 
such a weak system, rather than against a stronger one from which ACT can be eliminated. 
 
Instead of uniformly translating subformulae of type ACTϕ into counterpart theory, I want to 
propose an antecedent elimination strategy that makes do without this operator altogether. We 
first eliminate all occurrences of ACT by translating the modal claims in question into a 
quantified modal logic in which this operator is redundant. After that, we apply a slightly 
modified version of Lewis’s translation scheme to the resulting ACT-free sentences to generate 
substitutes in counterpart theory. This provides a systematic counterpart treatment of sentences 
involving ACT, but it does not proceed by uniformly substituting all subformulae containing 
actuality operators. A similar strategy works for NOW in tense logic. We first eliminate all 
occurrences of this operator by translating into a suitably chosen quantified tense logic, and then 
translate from there to stage theory.  
 
5. ACT in propositional modal logic 

To spell out the details of this proposal, I need to say a little bit more about the logic of ACT. 
This operator is clearly superfluous whenever it occurs in a subformula of the form ACTϕ that is 
not within the scope of another modal operator. Prefixing a subformula ϕ with ACT forces ϕ to 
be evaluated in the actual world, but that is where the unadorned ϕ would get evaluated, anyway. 
All leading occurrences of ACT can therefore be erased without altering the truth conditions of 
the sentence in question. Similar remarks apply to subformulae that are outside the scope of other 
modal operators and that start with a string of ☐ or ◊ in any order, followed by an occurrence of 
ACT, followed by some formula ϕ. Here is an example: ☐◊◊☐◊☐ACTϕ. In such special cases, as 
I want to call them, the string of modal operators preceding ϕ is again redundant. No matter what 
world the leading boxes and diamonds take us to, ACT always sends us back to the actual world. 
Given such a special case, we can erase all modal operators preceding ϕ, including ACT. 
 
What prevents the logic of ACT from being entirely trivial is that not all occurrences of the 
actuality operator are in special cases. There are instances where ACT occurs within the scope of 
a ☐ or ◊, but the two are separated by another logical constant. Here is a schematic example that 
uses disjunction: ◊( … ∨ … ACT … ). Whether the actuality operator is eliminable in general 
therefore depends on whether the leading ☐ or ◊ and the nested ACT can always be moved 
towards each other, past the intervening logical constant, to generate a special case. In 
propositional modal logic, this is easily done. The actuality operator commutes with negation, 
¬ACTϕ ↔ ACT¬ϕ, and ◊ distributes over disjunctions, ◊(ϕ1 ∨ … ∨ ϕn) ↔ (◊ϕ1 ∨ … ∨ 
◊ϕn). In general, ◊ does not distribute over conjunctions, but we do have the valid schema ◊(ϕ & 
ACTψ) ↔ (◊ϕ & ACTψ). Jointly, these relations between modal operators and truth functions 
suffice to prove that ACT is redundant in propositional modal logic. To construct an ACT-free 
paraphrase of a given sentence, we start by moving a leading ☐ or ◊ and the nearest nested 
occurrence of ACT towards one another until we obtain a special case. We then erase the entire 
string of operators and keep repeating the operation with the new sentence until we end up with a 
logically equivalent sentence without occurrences of ACT. (The proof can be found in Hazen 
1978; Kamp 1971 employs a similar strategy to show that NOW is redundant in propositional 
tense logic. See also Thm. 2 in Meyer 2009.) 
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6. ACT in quantified modal logic  

The situation is more complicated in quantified modal logic, where a quantifier can get stuck 
between a leading modal operator and a nested ACT. Given that ☐ can be taken as shorthand for 
¬◊¬, and given that ACT commutes with negation, there are two ways in which this can happen: 
 
◊∃-case: ◊ … ∃x … ACT … . 
◊∀-case: ◊ … ∀x … ACT …  
 
Whether our ACT-elimination strategy extends to these cases depends on what we say about the 
interaction between quantifiers and operators, and at this juncture the precise details of our 
quantified modal logic begin to matter. Let me first concentrate on ◊∃-cases and postpone the 
discussion of the slightly more complicated ◊∀-cases until section 8.  
 
The standard arguments that purport to show that ACT is not redundant in quantified modal logic 
all adopt a world-relative account of quantification. On such a view, the range of ∃ and ∀ at a 
world is restricted to the objects that exist in that world. If that is how we read the quantifiers then 
ACT is indeed ineliminable from many sentences of quantified modal logic, including the 
examples (A) and (B) mentioned earlier. Similarly, NOW is ineliminable in a quantified tense 
logic in which the quantifiers have time-relative domains, as assumed by Kamp’s treatment of 
(C). These are noteworthy results, but we can also do things differently. Suppose we adopt the 
simplest quantified modal logic (SQML) of Bernard Linsky and Edward Zalta 1994. In this 
system, quantifiers are not relativized to worlds, but always range over all possible objects. To 
render world-relative existence claims, SQML needs an independent, primitive existence 
predicate E! that has different extensions in different possible worlds. There is no need for such a 
predicate if we use world-relative quantifiers, which allow us to define an existence predicate in 
terms of the existential quantifier and identity:2 
 
(DF) E!x ↔ ∃y x = y 
 
We cannot use this definition of E! in SQML, where quantification and existence come apart. 
Every object in the unrestricted domain of quantification of SQML satisfies ∃y x = y, but only 
those objects that exist in the world under consideration satisfy E!x. So the biconditional (DF) is 
not true in all models and cannot be used to define the existence predicate.3 But if we have 
unrestricted quantifiers and an independent existence predicate at our disposal then the previously 
problematic (A) can easily be given an ACT-free regimentation as ∃x(◊E!x & ¬E!x). Here the 
leading existential quantifier ranges over all possible objects, but the predicate E! gets evaluated 
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  We tacitly assumed this account when we earlier formalized (A) as ◊∃x(∃y x = y & ¬ACT∃y x = y).	
  
3 Williamson (1998; 2002) views the matter differently. He accepts (DF) even for SQML and concludes 
that every object exists in all possible worlds, but may lack spatial and temporal location in some possible 
worlds. As Fara and Williamson note in 2005, p. 25, though, this is not a quantified modal logic that a 
counterpart theorist is likely to endorse because not every object has counterparts in every world. 



 8 

in the possible world under consideration. Since the second conjunct ¬E!x occurs outside the 
scope of the possibility operator, it gets evaluated in the actual world. 
 
This works more generally. Since the range of quantification does not depend on what world we 
are in, ∃ and ◊ commute in SQML and the Barcan Formula ∃x◊ϕ ↔ ◊∃xϕ is true in all models. 
This allows us to push the modal operator ◊ past the quantifier ∃ and eliminate ACT in all ◊∃-
cases. Except for ◊∀-cases, which we still need to deal with, the operator ACT is therefore 
redundant in SQML. For each sentence that contains this operator, we can find an ACT-free 
sentence that is true in exactly the same models. By way of illustration, here are some of the 
problem cases (with their original equation numbers) discussed in Fara and Williamson 2005: 
  

 Fara and Williamson example  SQML regimentation 
(10)  Fa & ¬ACTFa   Fa & ¬Fa 
(12) ◊∃x(ACTFx ↔ ACT¬Fx)  ∃x(Fx ↔ ¬Fx) 
(18) Fa & (ACT¬Fa ∨ ¬ACTFa)  Fa & (¬Fa ∨ ¬Fa) 
(24) ◊∃x(ACTFx & ACT¬Fx)  ∃x(Fx & ¬Fx) 
 
Note that all four sentences get converted into logical falsehoods of SQML. Similar remarks 
apply to a tense version of SQML in which quantifiers range over all objects that exist at some 
time or other. In such a quantified tense logic with untensed quantifiers, Kamp’s problem case 
(C) can be given the NOW-free formalization ∃x(PBx & FRx). (For further details and proofs, see 
Meyer 2009, Sec. 5.)  
  
7. A revised translation scheme 

To translate the resulting SQML sentences into counterpart theory, we need to make a few 
adjustments to Lewis’s translation scheme. Counterpart theory employs unrestricted 
quantification over all possible worlds and their contents, but Lewis assumes that the quantifiers 
of quantified modal logic are world-relative. We can easily accommodate the unrestricted 
quantifiers of SQML by removing Lewis’s restriction of counterpart-quantifiers to objects in w, 
but then we would also need to modify the way we translate atomic formulae. As noted at the end 
of section 1, Lewis’s translation scheme ensures that unmodalized sentences get evaluated in the 
actual world @ of counterpart theory by the way it translates the quantifiers that bind the 
variables in atomic formulae. If we abolish the restriction on the quantifiers then we need to 
impose it on the atomic formulae to ensure the same net result. Moreover, since our existence 
predicate E! is primitive, and not defined in terms of quantification and identity, we also need to 
make allowance for atomic formulae of the form E!x. We do this by saying that E!x is true in a 
possible world w just in case x is in that world: 
 
(E!x)w   is Ixw 
(ϕx1 … xn)w is Ix1w & … & Ixnw & ϕx1 … xn if ϕ is an atomic formula not containing E! 
(¬ϕ)w  is  ¬ϕw 
(ϕ → ψ)w  is ϕw → ψw 
(∀xϕ)w  is ∀xϕw 
(☐ϕx1 … xn)w is ∀v∀y1 … ∀yn((Wv & Iy1v & Cy1x1 & … & Iynv & Cynxn) → (ϕy1 … yn)v) 
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In SQML, we express quantification over all actual objects as ∀x(E!x → ϕ). Our new scheme 
translates this as ∀x(Ix@ → ϕ@), which is exactly how Lewis’s original translation scheme deals 
with quantification over actual objects. Note also that the Barcan Formula ∃x◊Fx ↔ ◊∃xFx get 
translated as ∃x∃v∃y(Wv & Iyv & Cyx & Fy) ↔ ∃v(Wv & ∃x(Ixv & Fx)), which is a theorem of 
counterpart theory. (To derive the right side of the biconditional from the left, we drop the x-
quantifier and the conjunct Cyx; to derive the left side from the right, we use the principle (P6).) 
 
8. Quantification over sets 

Even in SQML, the modal operator ◊ does not commute with the universal quantifier ∀, which 
means that we need a different elimination strategy for ◊∀-cases. The solution I propose 
supplements our quantified modal logic with the ability to quantify over subsets of the domain of 
quantification. Suppose we add the set membership relation ∈ and set variables X, Y, Z, … to 
SQML. Models are the same as before, but we now also form a set hierarchy with the objects in 
the regular domain as Urelemente. Set variables range over the sets in this hierarchy. Given these 
stipulations, set membership is ‘rigid’ and both ∀x∀X(x∈X → ☐x∈X) and ∀x∀X(x∉X → ☐x∉X) 
are true in all models of our expanded quantified modal logic. (There are different ways in which 
one could extend the existence predicate to the impure sets we get in this way. One could either 
say that all sets exist necessarily, or that they only exist in worlds in which all of their elements 
exist. Since there is no need to settle this question here, let me pass over this issue.) 
 
Theorem 4 in Meyer 2009 shows that NOW is redundant in a tense-variant of SQML with 
quantification over sets. For each sentence that contains NOW, the proof provides a NOW-free 
substitute that is true in exactly the same models. The same strategy can be used to prove that 
ACT is redundant in SQML with quantification over sets. Instead of repeating all the technical 
minutiae, let me just sketch the main idea of the elimination procedure. Consider a simple ◊∀-
case of the form ◊( … ∀x … ACTϕ … ) that contains no quantifiers or modal operators other 
than the ones depicted. To eliminate this one occurrence of ACT, we first define, outside the 
scope of ◊, a set X that contains all objects that actually satisfy ϕ. Within the sentence itself, we 
then substitute the occurrence of ACTϕ with the formula x∈X: 
 
Original sentence: ◊( … ∀x … ACTϕ … ) 
ACT-free paraphrase: ∃X(∀x(x∈X ↔ ϕ) & ◊( … ∀x … x∈X … )) 
 
Applied to sentence (B), which we earlier regimented as ◊∀x(ACTRx → Px), our elimination 
method yields ∃X(∀x(x∈X ↔ Rx) & ◊∀x(x∈X → Px)) as the ACT-free regimentation of the 
claim that it might have been that everyone who is in fact rich was poor. The x-quantifiers range 
over all possible objects, but the set X gets defined outside the scope of modal operators and only 
contains people that are actually rich, rather than all possibly rich ones.  
 
(At this point, it is important to remember that we restricted the ordinary quantifiers of quantified 
modal logic to domains without mathematical objects. Otherwise, we would now run into trouble 
with claims like ‘Everything that is in fact an ordinal number might have been a chicken’, which 
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cannot be dealt with in the same way as (B) because there is no set that contains all ordinals. This 
problem could be avoided by using plural quantification instead of quantification over sets, as 
proposed in Bricker 1989. But since mathematical claims need to be treated separately, anyway, 
this is not a complication we need to consider here.) 
 
Many ◊∀-cases are of course a little bit more complicated than the example we just discussed. 
For example, the formula ϕ could contain a number of variables x1, … , xn that are bound by a 
mix of universal and existential quantifiers that occur between the leading ◊ and the nested ACT. 
In such a case, we would use ϕ to define a set X of n-tuples of elements of the domain outside the 
scope of ◊, and then substitute ACTϕ with 〈x1, … , xn〉∈X: 
 
Original sentence: ◊( … ACTϕ … ) 
ACT-free paraphrase: ∃X(∀x1 … ∀xn (〈x1, … , xn〉∈X ↔ ϕ) & ◊( … 〈x1, … , xn〉∈X … )) 
 
If the embedded formula ϕ itself contains further occurrences of ACT then we start by 
eliminating the innermost occurrence of ACT, and then re-apply our method until all actuality 
operators have been eliminated. The resulting ACT-free paraphrase would then contain more than 
one set definition, but because we worked from the inside out, none of these sets is defined in 
terms of any of the other sets. Together with the elimination strategy that we developed for ◊∃-
cases, this allows us to eliminate ACT from all sentences of SQML with quantification over sets. 
 
There is one last problem that needs to be taken care of. After we have extended SQML with set 
quantifiers, it contains the resources to make claims about the hierarchy of pure sets. The question 
is what we should do with such claims when we translate into counterpart theory. My proposal is 
that we simply ignore them. How Lewis might account for modal claims about pure sets and 
other mathematical objects is not an issue we are concerned with here. To give ACT-free 
regimentations of modal claims about physical objects, we only need quantification over n-tuples 
of elements of the domain of ordinary quantification. This means that it suffices to provide two 
more clauses for our translation scheme that deal with these specific cases. Set quantifiers 
translate like ordinary quantifiers, and attributions of set membership translate like other atomic 
sentences:  
  
(∀Xϕ)w  is ∀X ϕw 
 (〈x1, … , xn〉∈X)w  is  Ix1w & … & Ixnw & 〈x1, … , xn〉∈X 
 
With these final additions in place, we can now sum up the antecedent elimination strategy. We 
begin by regimenting all modal claims about physical objects in SQML with an existence 
predicate and quantification over sets. By doing so, we eliminate all occurrences of the actuality 
operator ACT. After that, we apply our revised translation scheme to these ACT-free sentences to 
produce substitutes in counterpart theory. The parallel strategy allows the stage theorist to 
account for claims of quantified tense logic that make use of the operator NOW. We first translate 
such claims into a tense-analogue of SQML with quantification over sets, and then translate these 
NOW-free sentences into stage theory.  
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These solutions are of course based on the acceptance of SQML and its tense counterpart. 
Actualists and presentists might well object to the ‘possibilist’ and ‘eternalist’ quantifiers that 
these logical theories employ, but their concerns can be ignored here. It was clear from the outset 
that counterpart theory is incompatible with actualism, and that stage theory is incompatible with 
presentism. What Fara and Williamson try to show is that counterpart theory fails on its own 
terms, not that it runs counter to actualism. To rebut their objection, it suffices to provide a 
counterpart translation of every claim in a possibilist quantified modal logic with appropriate 
expressive resources, and SQML fits that description.  
  
9. Conclusion 

Fara and Williamson take it for granted that any plausible response to their objection would have 
to provide a uniform way of substituting every subformula of type ACTϕ with a claim of 
counterpart theory. The only other option, they suggest, is to deal with the issue case-by-case, 
which ‘requires accepting that the semantics for natural language is radically non-compositional’ 
(2005, p. 27). I do not think this is right. For one, it is surely not the case that the meaning of 
every word of English can be specified independently of the context of the sentences in which it 
occurs. A case-by-case treatment of ACT might be unacceptable if it was ad hoc or unsystematic, 
but that is not true of the solution proposed here. Since the elimination of ACT from SQML does 
not proceed by uniformly substituting every subformula of type ACTϕ, the subsequent 
application of the translation scheme does not provide a uniform counterpart translation of the 
actuality operator, either. But the treatment is systematic, and it gives the correct account of the 
contribution that ACT makes to the truth-conditions of sentences of quantified modal logic. The 
semantic role of ACT is to make claims about what is actually the case, but that role can also be 
played by appropriately chosen quantificational resources.4 
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